Combining Learning from Human Feedback and Knowledge Engineering to Solve Hierarchical Tasks in Minecraft

by Goecks, Vinicius G. Waytowich , Nicholas, Watkins, David, Prakash, Bharat

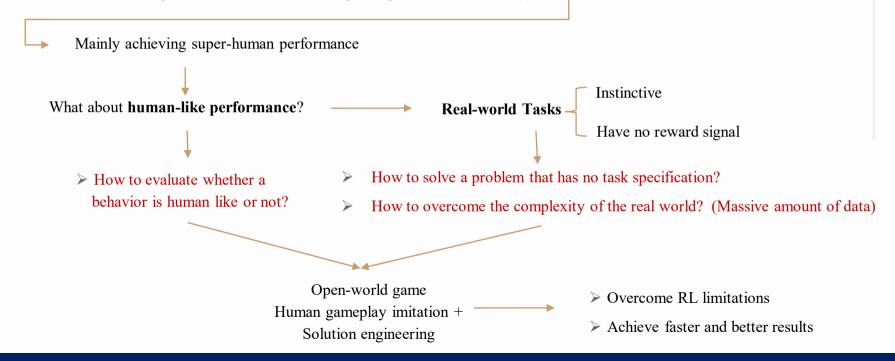
AAAI 2022 SPRING SYMPOSIUM

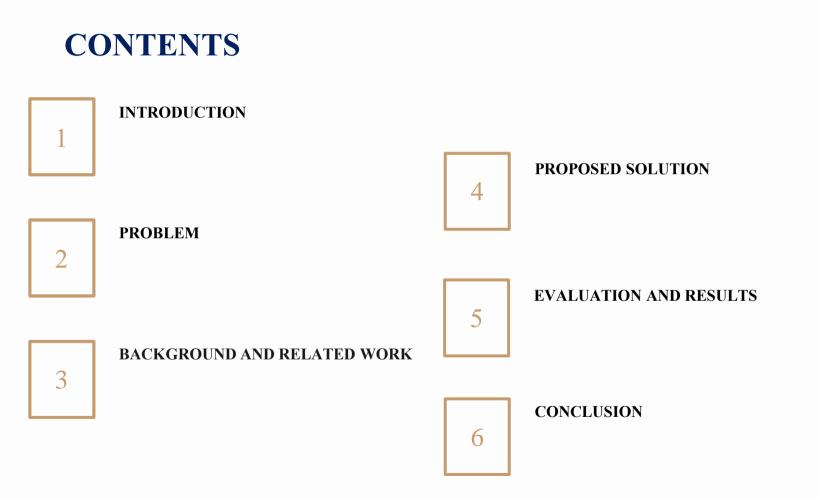
Sirine Younsi, 1st year Master's Student, Kaneko Lab

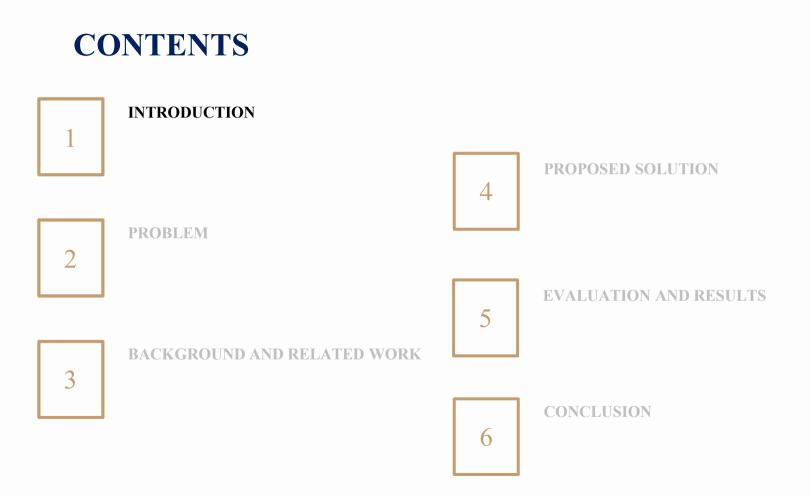
Ref: https://arxiv.org/abs/2112.03482

SUMMARY

Reinforcement learning has had a lot of breakthroughs in game AI (Dota / Go) ____







MINECRAFT

Environment

- Open-world : procedurally generated 3D world
- Instinctive task hierarchies
- Sparse rewards

Interactions

- ➢ Free navigation
- Interaction with a variety of fauna and flora.
- Mining, collecting, and searching for resources.
- Designing and building complex objects.

Figure 1. Game of Minefcraft

INTRODUCTION

MINERL

Large-scale dataset of human gameplay (MineRL-v0 Dataset)

Set of Minecraft environments

MINERL Challenge (started 2019)

Overcome Deep RL limitations *HOW?* Leverage imitation Learning

Sample inefficiency (e.g, AlphaGoZero played 4.9 million games)

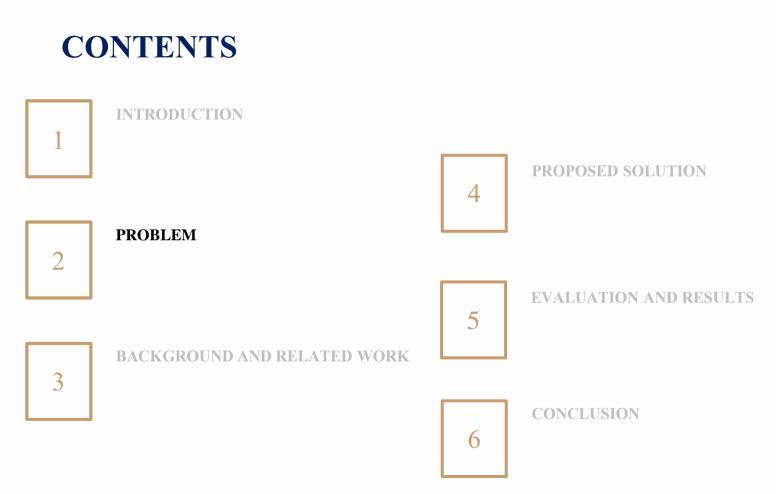
Specifying Tasks /

Sparse Reward

Navigate:

 Obtain:
 Image: Second Seco

Figure 2. Minecraft Tasks addressed by MineRL



PROBLEM

MINERL CHALLENGE 3rd EDITION: BASALT COMPETITION 2021

Mission:

Develop agents with human-like behavior capable of solving the following tasks

Time:

4 days

Dataset:

40 to 80 human demonstrations for each task

Evaluation method:

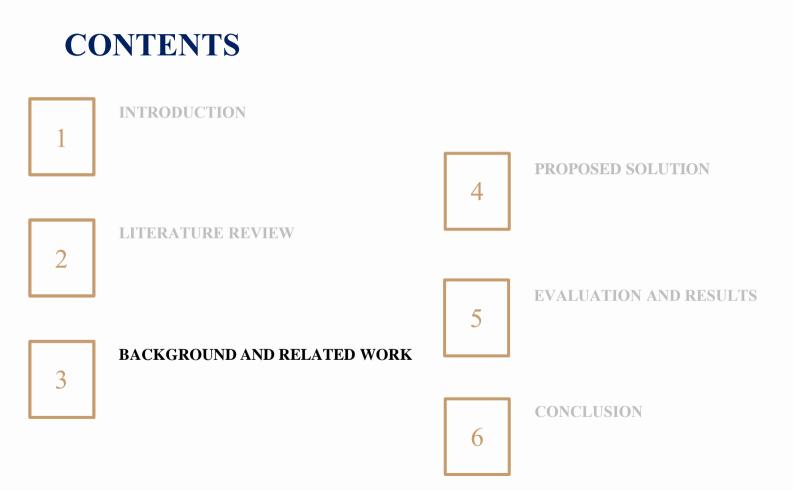
Human feedback (No reward function)

Find Cave

Make Waterfall

Create Animal Pen

Build Village House



MINERL DATASET

60 Million State-Action pair * 4 Versions

2 Resolutions (64 × 64 / 192 × 256)

2 Textures (default Minecraft / simplified)

4 Task families:

- Navigation
- Tree Chopping
- Obtain Item
- Survival

State :

- RGB video frame of the player's
 - point-of-view
- player inventory
- item collection events
- distances to objectives
- player attributes (health, level, achievements)
- current GUI details

Action

- keyboard presses on the client.
- The change in view caused by mouse movement.
- All player GUI click and interaction events
- Chat messages sent,
- Other actions such as item

crafting.

END-TO-END MACHINE LEARNING

Algorithms that learn purely from data, with minimal bias or constraints added by human designers **Example:**

Deep reinforcement learning algorithms directly playing video games from pixel inputs

HUMAN-IN-THE-LOOP MACHINE LEARNING

Algorithms that learn from human feedback

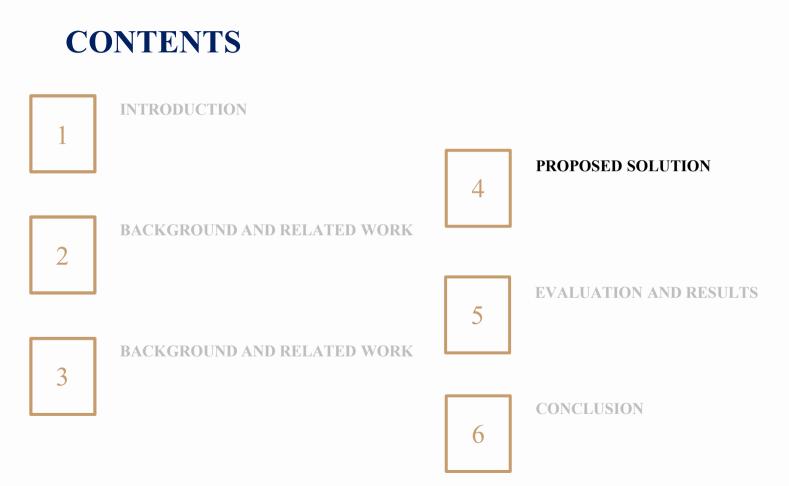
Example:

Agent trained based on human demonstrations of the task (successful and failed examples)

LIMITATIONS

- Limited human demonstration dataset (40-80 demonstrations is not enough)
- Data with low quality
- ➤ Large-observation space
- Limited computing time

Not adequate to solve the BASALT competition tasks because of their complexity



HYBRID INTELLIGENCE

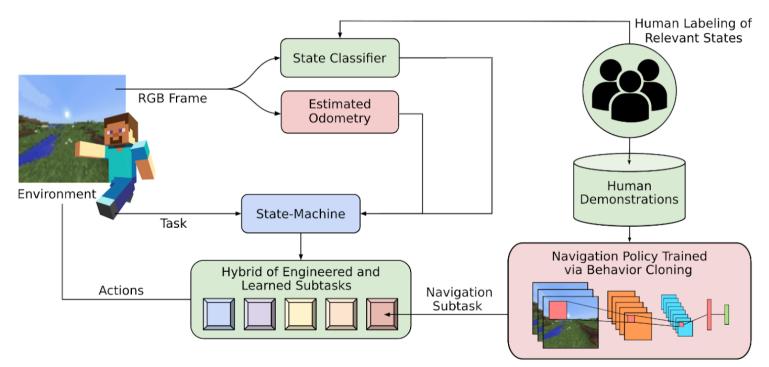
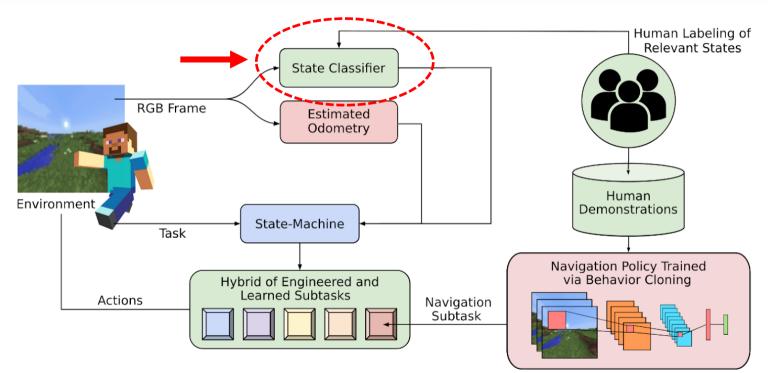


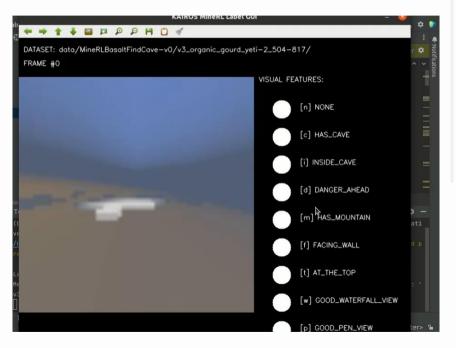
Figure 3. proposed solution: Hybrid Intelligence, Goeks et al. (2021)



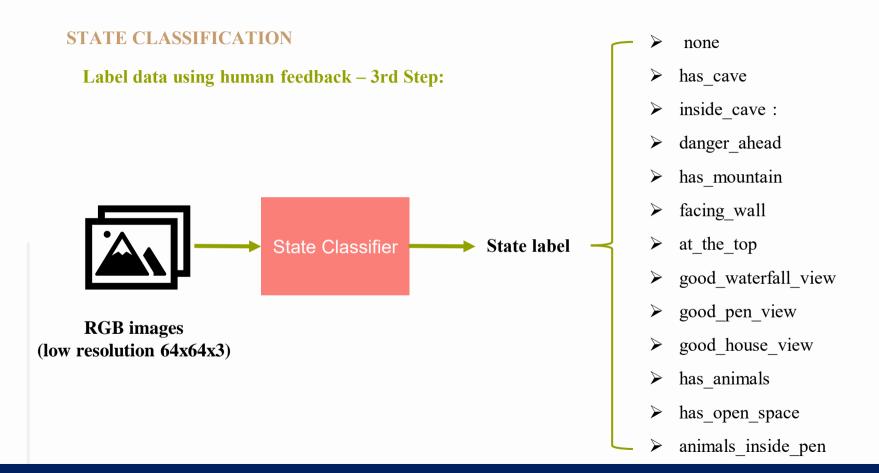
Label data using human feedback – 2nd Step:

labelDataGUI.py:

Humans were assigned to label image frames from the collected human demonstration data.



GUI label demonstration



Label data using human feedback – 1st Step:

dataProcessing.py:

Actions and images are extracted from recorded videos and saved as NumPy arrays

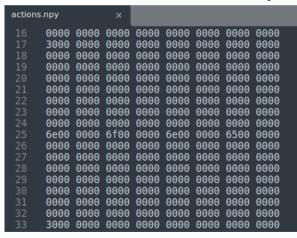


Figure 3. actions NumPy array extracted from one demonstration video

Convert NumPy arrays to PNG images

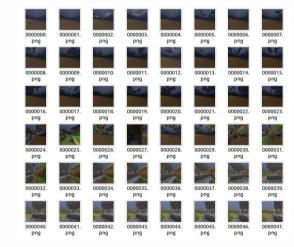


Figure 4. sequence of PNG images extracted from video

Label data using human feedback – 4th Step:

compileLabels.py:

Group images and labels in two NumPy files

Images labeled: 81888 images Labels for class 0: 44605 (54.471 %) Labels for class 1: 1138 (1.390 %) Labels for class 2: 1055 (1.288 %) Labels for class 3: 3135 (3.828 %) Labels for class 4: 3591 (4.385 %) Labels for class 5: 3730 (4.555 %) Labels for class 6: 3253 (3.972 %) Labels for class 7: 2587 (3.159 %) Labels for class 8: 3373 (4.119 %) Labels for class 9: 2112 (2.579 %) Labels for class 10: 7685 (9.385 %) Labels for class 11: 6004 (7.332 %) Labels for class 12: 664 (0.811 %)

Figure 5. Amount of data for each state label/class

Label data using human feedback – 5th Step:

StateClassifier.py:

Used a convolutional classifier inspired from Deep Tamer

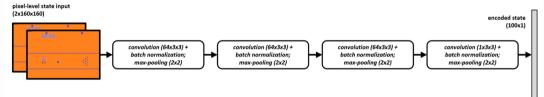


Figure 7. Architecture of state encoder, warner et al. 2018

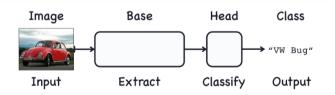
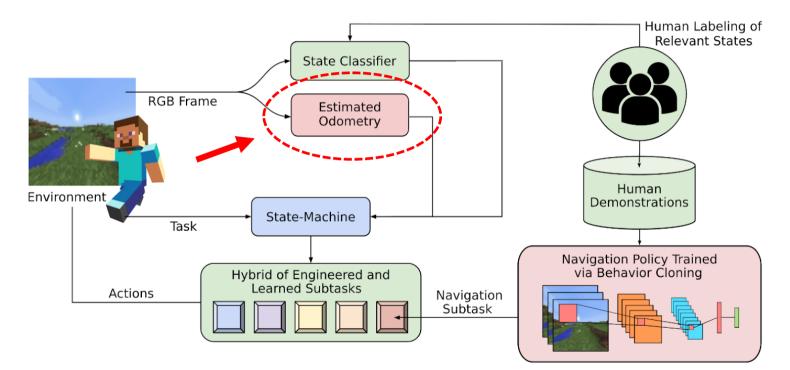


Figure 6. convolutional classifier source: https://www.kaggle.com/code/ryanholbrook/the-convolutionalclassifier/tutorial

Figure 8. Train and Test dataset

ODOMETRY MAP



ODOMETRY MAP

Problem:

Absence of basic localization

Solution: Estimated Odometry:

Attach a coordinate to each classified state Initial Values and Assumptions

- Player starts at position (0,0)
- Agent's Velocity: Walking: 4 . 317 m/s. Sprinting: 5 . 612 m/s Sprinting + Jumping: 7 . 127 m/s
- Heading angle θ:
 =>Follows point-mass kinematics:
 x⁻ = V cos (θ)
 y⁻ = V sin (θ)

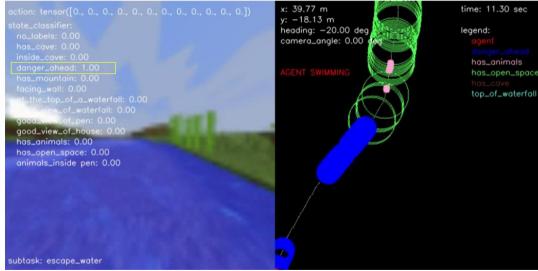
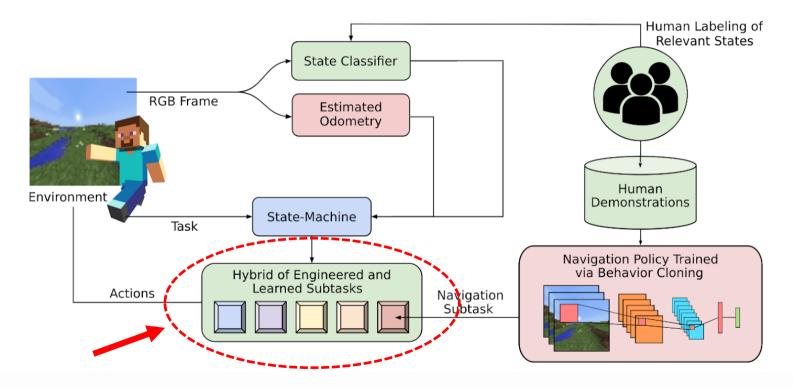


Figure 9. Odometry map generated in real time, Goeks et al. (2021)



- The 4 tasks to solve are too complex
- → Need for Perception, Memory, Reasoning
- Decompose each task to subtasks using human knowledge of the task
- Use hybrid Intelligence:

Some subtasks are learned from human data (e.g., Navigation).

Some subtasks are directly engineered (e.g., Throw a snowball at the end of an episode).

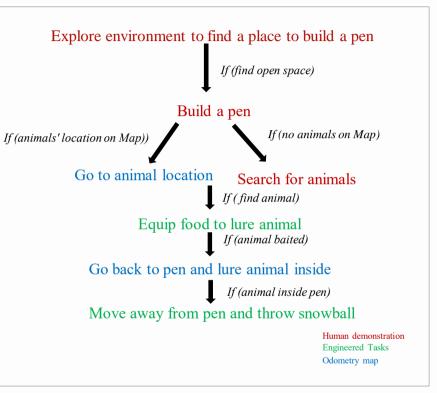


Figure 10. Subtasks of the Task CreateVillageAnimalPen

Engineered subtask

```
def subtask_end_episode(self):
                                                                                    self.action_str_to_int = {
                                                    Equip agent with 
    action = th.zeros(12)
                                                      snowball from
                                                     Inventory
    # throw snowball
    if self.task == "BUILD_HOUSE":
                                                     4 is the label of action
        action[4] = 22 # equip it
                                                     "equip" in the list of
                                                     defined actions
        action[4] = 8 # equip it
    action[11] = 1 # throw it
                                                     8 and 22 are the
    return action
                                                     positions of the
```

Figure 11. end_episode subtask (in package Kairos_minerl)

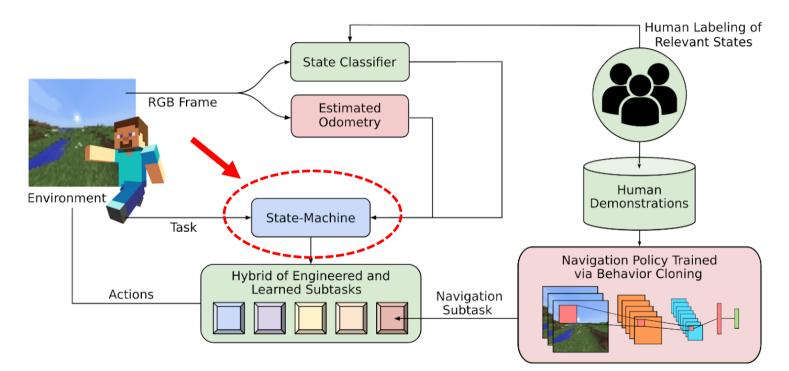
snowball item in the Figure 12. list of labeled Actions agentrs inventory

learned subtask

behaviorCloner.py

Initializing Standard	BC model!	
Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 128, 64, 64]	3,584
ReLU-2	[-1, 128, 64, 64]	
BatchNorm2d-3	[-1, 128, 64, 64]	256
MaxPool2d-4	[-1, 128, 32, 32]	
Conv2d-5	[-1, 64, 32, 32]	73,792
ReLU-6	[-1, 64, 32, 32]	
BatchNorm2d-7	[-1, 64, 32, 32]	128
MaxPool2d-8	[-1, 64, 16, 16]	
Conv2d-9	[-1, 3, 16, 16]	1,731
ReLU-10	[-1, 3, 16, 16]	
BatchNorm2d-11	[-1, 3, 16, 16]	
Dropout-12	[-1, 768]	
Linear-13	[-1, 256]	196,864
ReLU-14	[-1, 256]	
Dropout-15	[-1, 256]	
Linear-16	[-1, 256]	65,792
ReLU-17	[-1, 256]	
Linear-18	[-1, 13]	3,341

Figure 13. Autoencoder Architecture



Example: Task MakeWaterfall

search for location in the mountain to make a waterfall

build additional blocks to add height to the waterfall

Place waterfall using bucket

Move forward from waterfall

Turn around and throw snowball

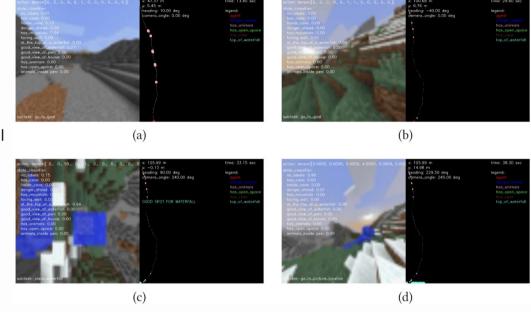


Figure 14. Sequence of frames of the hybrid Agent solving MakeWaterfall task

stateMachine.py

Figure 15. State machine for task build waterfall code

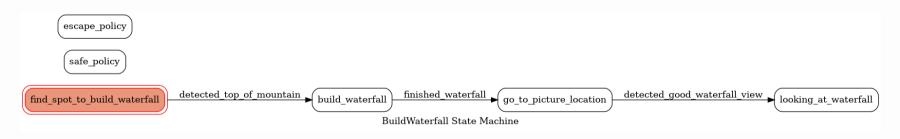


Figure 16. State machine plotted for task build waterfall

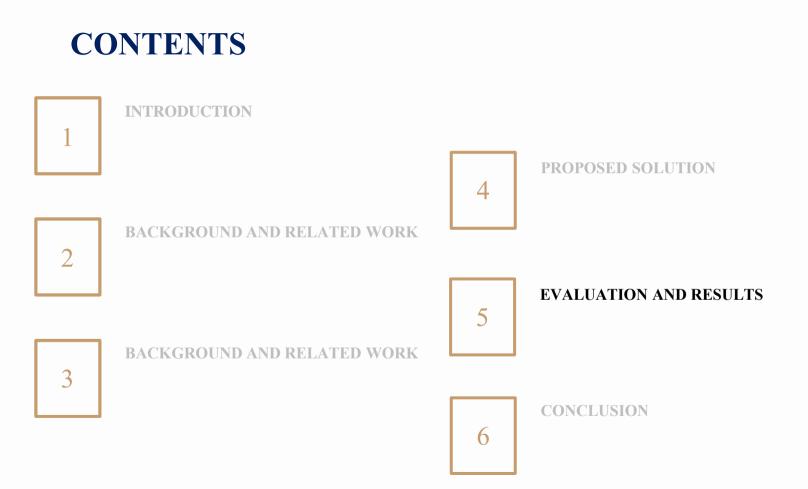
x: 0.22 m animals_inside pen: 0.00

x: 0.22 m y: 0.00 m heading: 0.00 deg camera_angle: 0.0<u>0 deg</u> time: 0.05 sec

legend:

danger_ahead has_onimals has_open_space top_of_waterfall

Figure 17. MakeWaterfall task demonstration



EVALUATION METHOD

4 types of agents were compared head-to-head by 7 different human evaluators:

Hybrid: proposed solution
Engineered: only navigation task was learned from human data and rest engineered)
Behavior cloning (BC): all tasks learned from human data
Human: human demonstration from the provided dataset

Metrics:

Best performer Fastest performer More human-like behavior



Figure 18. Evaluation data structure for the human evaluators

EVALUATION AND RESULTS

EVALUATION INTERFACE

Possible outcomes:

Agent 1 wins

Agent 2 wins

None (Draw when none of the agents achieved the task)

Task: CreateVillageAnimalPen

After spawning in a village, the agent should build an animal pen containing two of the same kind of animal next to one of the houses in a village.

Agent 1

Evaluation Form

Agent 2

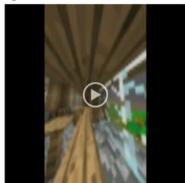


Figure 19. Evaluation Interface, Goeks et al. (2021)

15 20 25 30

Skill Level

10

TrueSkill TM SCORE

Each participant/Agent type is characterized by a Gaussian distribution that has: Mean value μ (Average skill of a participant) Standard deviation μ (Degree of uncertainty in the participant's skill)

TrueSkill Rate calculation: $R = \mu - 3^*\mu$

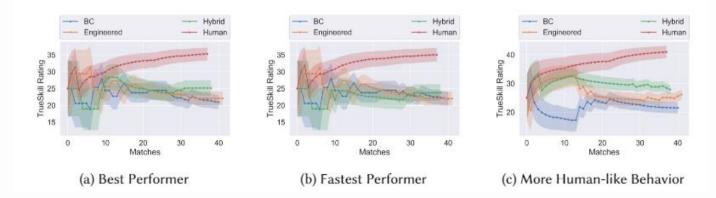


Figure 20. Evolution of TrueSkill TM score for each performance metric and for each agent type performing the FindCave task., Goeks et al. (2021)

AVERAGED PERFORMANCE

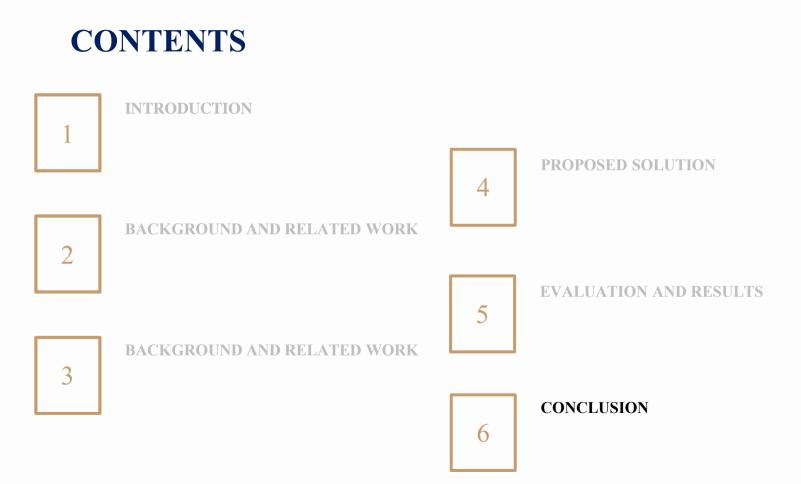
Task	Performance Metric	TrueSkill Rating			
		Behavior Cloning	Engineered	Hybrid	Human
All Tasks Combined	Best Performer	20.30 ± 1.81	24.21 ± 1.46	25.49 ± 1.40	32.56 ± 1.85
	Fastest Performer	19.42 ± 1.94	26.92 ± 1.45	27.59 ± 1.38	28.36 ± 1.69
	More Human-like Behavior	20.09 ± 2.04	26.02 ± 1.56	26.94 ± 1.57	36.41 ± 2.12

Figure 21. Averaged score of all tasks for each performance metric and agent type, Goeks et al. (2021)

TrueSkill TM SCORE

Task	Performance Metric	TrueSkill Rating			
Tusk		Behavior Cloning	Engineered	Hybrid	Human
FindCave	Best Performer	24.32 ± 1.27	24.29 ± 1.21	25.14 ± 1.19	32.90 ± 1.52
	Fastest Performer	24.65 ± 1.27	24.16 ± 1.21	24.79 ± 1.19	32.75 ± 1.54
	More Human-like Behavior	21.53 ± 1.70	26.61 ± 1.43	28.25 ± 1.51	38.95 ± 1.96
MakeWaterfall	Best Performer	15.16 ± 2.10	23.16 ± 1.60	26.53 ± 1.39	24.39 ± 1.62
	Fastest Performer	14.67 ± 2.26	28.95 ± 1.74	28.88 ± 1.46	18.85 ± 2.02
	More Human-like Behavior	21.27 ± 1.98	24.51 ± 1.52	26.91 ± 1.35	26.48 ± 1.61
CreateVillage AnimalPen	Best Performer	21.87 ± 1.94	23.56 ± 1.38	26.49 ± 1.48	33.89 ± 1.73
	Fastest Performer	18.62 ± 2.27	27.00 ± 1.32	29.93 ± 1.50	28.59 ± 1.53
	More Human-like Behavior	21.54 ± 2.29	25.53 ± 1.57	27.99 ± 1.68	40.60 ± 2.44

Figure 22. Score of each task for each performance metric and agent type, Goeks et al. (2021)



The proposed solution:

- Outperformed end-to-end machine Learning algorithm
- Outperformed purely engineered solution
- ➢ Used less data
- Used less computing time
- > Still not as good as a human player especially for the more human-like behavior metric

X

THANK YOU FOR YOUR ATTENTION

Sirine Younsi

Q&A

1. SUMMARY	2
2. INTRODUCTION	5
3. PROBLEM	8
4. BACKGROUND AND RELATED WORK	10
5. PROPOSED SOLUTION	14
4.1 State classification	15
4.2 Odometry Map	21
4.3 Learning and engineering subtasks	23
4.4 State Machine	27
6. EVALUATION AND RESULTS	. 32
7. CONCLUSION	38

BIBLIOGRAPHY

Goecks, Vinicius G. & Waytowich, Nicholas & Watkins, David & Prakash, Bharat. (2021). Combining Learning from Human Feedback and Knowledge Engineering to Solve Hierarchical Tasks in Minecraft

Warnell, Garrett & Waytowich, Nicholas & Lawhern, Vernon & Stone, Peter. (2018). Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces.