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Background

Knwoledge Graph

1. Heterogeneous graph: node or
two or more types of edges.

2. node becomes an entity and
edge becomes a relationship.

3. Traditional Graph G = (V, F))
Knowledge Graph
G=(V,E,R,T)

Nodes, Edges, Node type,
Relation type.

https://velog.io/@jbeen2/CS224W-17.-Reasoning-over-Knowledge-Graphs
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Abstract

Knowledge Graph Attention Network(KGAT)

1. Provide better recommendation with item side information.

2. KGAT model, which achieves high-order relation modeling in an explicit and end-top-
end manner under GNN.

3. Conduct extensive experiments to demonstrate the effectiveness pf KGAT and ites
interpretability



Task Formulation

Collaborative Knowledge Graph (CKG)

o CKG: which encodes user behaviors and item knowledge as a unified relational graph.
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Figure 1: Incorporating knowledge graph into user-item bipartite graph.

http://staff.ustc.edu.cn/~hexn/slides/kdd19-KGAT-poster.pdf
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Figure 2: Interlinks of CKG, especially high-order relations, bring benefits to rec-
ommendation and explanations.
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Introduction

Summary & Limitations of Three-type Works

Supervised Learning- Path- Regularization-
based based based

Knowledge Item knowledge =
Usage a generic feature
vector
Relation -
Usage

Limitations * Fail to capture CF

signals

* lgnore semantic &
structure
information

FM, NFM, TEM,
Wide&Deep ...

Examples

Connectivity =
paths connecting
users & items

To define meta-path
Or select qualified
paths

Require labor-
intensive feature
engineering

* Have rather high

complexity
MCRec, RippleNet,
FMG, KPRN ...

Graph structure =
an additional item

representations or
loss

To regularize the
learning of KG
embeddings
 Lack explicit
modeling of
high-order
relations

KTUP, CFKG, CKE ...

Figure 3: Due to the characteristics of these models, high-order relations have not

been fully and properly explored.
http://staff.ustc.edu.cn/~hexn/slides/kdd19-KGAT-poster.pdf
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Methodology

Overview of KGAT
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Figure 2: Illustration of the proposed KGAT model. The left subfigure shows model framework of KGAT, and the right subfigure
presents the attentive embedding propagation layer of KGAT.



Methodology

CKG Embedding Layer

We adopy TransR to parameterize entities and
relations of CKG as vector represetations,
considering direct connectivity of each triple
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Methodology

Attentive Embedding Propagation Layer 1/2

1. Information Propagation: Perform information propagation between an entity h and
its neighbors Nh

EN, = Z(h,r,t)ENh W(h,r,t)et

where 7T(h, T, t) controls how much information being propagated from tail entity ¢ to
head entity h conditioned to relation r .

2. Knowledge-aware Attention: Implement 7T(h, T, t) via relational attention
mechanism, which is formulated as follows:

mw(h,r,t) = (W,e;) Ttanh((W,ep + €,))



Methodology

Attentive Embedding Propagation Layer 2/2

3. Information Aggregation: The final phase is to aggregate the entity representation ey,
and its ego-network representations €y, as the new representation of entity h:

eg) = LeakyReLU (W1 (en + en,)) + LeakyRe LU (W (en, © ey, ))

4. High-order Propagation: Further stack more propagation layers to explore the high-

order connectivity information, gathering the information propagated from the higher-
hop neighbors:

-1 -1
ef = Y hrnen, T(hor el



Methodology

Model Prediction

1. After performing L layers, obtain multiple representations for user node u, namely
(1) (L)

€L ’...’eu .

* 0 L . 0 I
er=el) || e er =€ ||| e

2. Finally, conduct inner product of user and item representations, so as to predict their
matching score:

y(u,2) = ey Te;
Lor = X wijeo —mo(g(u, i) —§(u, j))
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Methodology
Optimization

Finally, the objective function to learn the loss function of KG and the loss function of CF
joinlty, as follows:

Lxcar = Lxag + Lcr
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Result

Overall Performance Comparsion

o KGAT consistently yields the best performance on all the datasets.

Amazon-Book Last-FM Yelp2018

recall ndcg recall ndcg recall ndcg
FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805
CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
MCRec 0.1113 0.0783 - - - -
RippleNet | 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822
GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489* 0.1006" | 0.0870* 0.1325" | 0.0712* 0.0867F
Z%Improv. 8.95% 10.05% 4.93% 5.77% 7.18% 5.54%

Figure 5: KGAT consistently yields the best performance on all the datasets.
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Result

Interaction Sparsity Levels

o Sparsity issue usually limits the expressiveness of recommender systems.
(The number on x axis mean the interaction numbers per user)
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Figure 6: KGAT outperforms the other models in most cases, especially on the two

sparsest user groups in Amazon-Book and Yelp2018.

13



Result

Case Study for Explainable Recommendation

e Solid line in left subfigure from w9gg to 24993, has the highest attention score.

The explannation as The Last Colony is recommended since you have watched Old
Man's War written by the same author John Scalzi
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Figure 4: Real Example from Amazon-Book.
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Conclusion

Conclusion

o High-order connectivity with semantic relations in CKG for knowledge-aware
recommendation.

o Core: the attentive embedding propagation layer, which adaptively propagates the
embeddings from a node's neighbors to update the node's representation.

o Extensive experiments on three real-world datasets demonstrate the rationality and
effectiveness of KGAT.
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Coding Task
Pull Request
e Implements other models

Trains other datasets

e Paper review documents update

Dockerfile updates

Bugs and fixes
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