**Paper Review** 

# KGAT: Knowledge Graph Attention Network

M1 Yang Boming

1

#### Background

### **Knwoledge Graph**

- 1. Heterogeneous graph: node or two or more types of edges.
- 2. node becomes an **entity** and edge becomes a **relationship**.
- 3. Traditional Graph  $G=\left(V,E
  ight)$

Knowledge Graph G = (V, E, R, T)Nodes, Edges, Node type, Relation type.



#### Abstract

# Knowledge Graph Attention Network(KGAT)

- 1. Provide better recommendation with item side information.
- 2. KGAT model, which achieves high-order relation modeling in an explicit and end-topend manner under GNN.
- 3. Conduct extensive experiments to demonstrate the effectiveness pf KGAT and ites interpretability

#### **Task Formulation**

# **Collaborative Knowledge Graph (CKG)**

• CKG: which encodes user behaviors and item knowledge as a unified relational graph.



Figure 1: Incorporating knowledge graph into user-item bipartite graph.



Figure 2: Interlinks of CKG, especially high-order relations, bring benefits to recommendation and explanations.

#### Introduction

### Summary & Limitations of Three-type Works

|                    | Supervised Learning-<br>based                                                                       | Path-<br>based                                                                                                    | Regularization-<br>based                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Knowledge<br>Usage | Item knowledge →<br>a generic feature<br>vector                                                     | Connectivity →<br>paths connecting<br>users & items                                                               | Graph structure →<br>an additional item<br>representations or<br>loss          |
| Relation<br>Usage  | -                                                                                                   | To define meta-path<br>Or select qualified<br>paths                                                               | To regularize the<br>learning of KG<br>embeddings                              |
| Limitations        | <ul> <li>Fail to capture CF signals</li> <li>Ignore semantic &amp; structure information</li> </ul> | <ul> <li>Require labor-<br/>intensive feature<br/>engineering</li> <li>Have rather high<br/>complexity</li> </ul> | <ul> <li>Lack explicit<br/>modeling of<br/>high-order<br/>relations</li> </ul> |
| Examples           | FM, NFM, TEM,<br>Wide&Deep                                                                          | MCRec, RippleNet,<br>FMG, KPRN                                                                                    | KTUP, CFKG, CKE                                                                |

Figure 3: Due to the characteristics of these models, high-order relations have not been fully and properly explored.

### **Overview of KGAT**



Figure 2: Illustration of the proposed KGAT model. The left subfigure shows model framework of KGAT, and the right subfigure presents the attentive embedding propagation layer of KGAT.

### Methodology CKG Embedding Layer

We adopy TransR to parameterize entities and relations of CKG as vector representations, considering direct connectivity of each triple (h, r, t):

$$egin{aligned} g(h,r,t) = & \| W_r e_h + e_r - W_r e_t \|_2^2 \ \mathcal{L}_{KG} = \sum_{(h,r,t,t') \in \mathcal{T}} - \ln \sigma(g(h,r,t') - g(h,r,t)) \end{aligned}$$



CKG Embedding Laver



### **Attentive Embedding Propagation Layer 1/2**

1. Information Propagation: Perform information propagation between an entity h and its neighbors  $\mathcal{N}_h$ 

$$e_{\mathcal{N}_h} = \sum_{(h,r,t)\in\mathcal{N}_h} \pi(h,r,t) e_t$$

where  $\pi(h, r, t)$  controls how much information being propagated from tail entity t to head entity h conditioned to relation r.

2. Knowledge-aware Attention: Implement  $\pi(h, r, t)$  via relational attention mechanism, which is formulated as follows:

$$\pi(h,r,t) = (W_r e_t) \top tanh((W_r e_h + e_r))$$

### **Attentive Embedding Propagation Layer 2/2**

3. Information Aggregation: The final phase is to aggregate the entity representation  $e_h$  and its ego-network representations  $e_{N_h}$  as the new representation of entity h:

$$e_h^{(1)} = LeakyReLU(W_1(e_h + e_{\mathcal{N}_h})) + LeakyReLU(W_2(e_h \odot e_{\mathcal{N}_h}))$$

4. **High-order Propagation**: Further stack more propagation layers to explore the highorder connectivity information, gathering the information propagated from the higherhop neighbors:

$$e_{\mathcal{N}_h}^{(l-1)} = \sum_{(h,r,t)\in\mathcal{N}_h} \pi(h,r,t) e_t^{(l-1)}$$

### **Model Prediction**

1. After performing L layers, obtain multiple representations for user node u, namely

$$e_u^{(1)}, \cdots, e_u^{(L)}$$
:  
 $e_u^* = e_u^{(0)} \parallel \cdots \parallel e_u^{(L)}, e_i^* = e_i^{(0)} \parallel \cdots \parallel e_i^{(L)}$ 

2. Finally, conduct inner product of user and item representations, so as to predict their matching score:

$$egin{aligned} \hat{y}(u,i) &= e^*_u op e^*_i \ \mathcal{L}_{CF} &= \sum_{(u,i,j) \in \mathcal{O}} - \ln \sigma(\hat{y}(u,i) - \hat{y}(u,j)) \end{aligned}$$

# Optimization

Finally, the objective function to learn the loss function of KG and the loss function of CF joinlty, as follows:

 $\mathcal{L}_{KGAT} = \mathcal{L}_{KG} + \mathcal{L}_{CF}$ 



#### Result

### **Overall Performance Comparsion**

• KGAT consistently yields the best performance on all the datasets.

|           | Amazon-Book |         | Last-FM |         | Yelp2018 |         |
|-----------|-------------|---------|---------|---------|----------|---------|
|           | recall      | ndcg    | recall  | ndcg    | recall   | ndcg    |
| FM        | 0.1345      | 0.0886  | 0.0778  | 0.1181  | 0.0627   | 0.0768  |
| NFM       | 0.1366      | 0.0913  | 0.0829  | 0.1214  | 0.0660   | 0.0810  |
| CKE       | 0.1343      | 0.0885  | 0.0736  | 0.1184  | 0.0657   | 0.0805  |
| CFKG      | 0.1142      | 0.0770  | 0.0723  | 0.1143  | 0.0522   | 0.0644  |
| MCRec     | 0.1113      | 0.0783  | -       | -       | -        | -       |
| RippleNet | 0.1336      | 0.0910  | 0.0791  | 0.1238  | 0.0664   | 0.0822  |
| GC-MC     | 0.1316      | 0.0874  | 0.0818  | 0.1253  | 0.0659   | 0.0790  |
| KGAT      | 0.1489*     | 0.1006* | 0.0870* | 0.1325* | 0.0712*  | 0.0867* |
| %Improv.  | 8.95%       | 10.05%  | 4.93%   | 5.77%   | 7.18%    | 5.54%   |

Figure 5: KGAT consistently yields the best performance on all the datasets.

#### Result

### **Interaction Sparsity Levels**

• Sparsity issue usually limits the expressiveness of recommender systems. (The number on x axis mean the interaction numbers per user)



Figure 6: KGAT outperforms the other models in most cases, especially on the two sparsest user groups in Amazon-Book and Yelp2018.

#### Result

### **Case Study for Explainable Recommendation**

• Solid line in left subfigure from  $u_{208}$  to  $i_{4293}$ , has the highest attention score. The explannation as The Last Colony is recommended since you have watched Old Man's War written by the same author John Scalzi



Figure 4: Real Example from Amazon-Book.

#### Conclusion

## Conclusion

- High-order connectivity with semantic relations in CKG for knowledge-aware recommendation.
- Core: the attentive embedding propagation layer, which adaptively propagates the embeddings from a node's neighbors to update the node's representation.
- Extensive experiments on three real-world datasets demonstrate the rationality and effectiveness of KGAT.

Coding Task

### **Pull Request**

- Implements other models
- Trains other datasets
- Paper review documents update
- Dockerfile updates
- Bugs and fixes