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Overfitting

Overfitting refers to the condition when a model memorizes the training data too well and therefore
fails in generalize to the underlying function completely.
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Image source: https://cnl.salk.edu/~schraudo/teach/NNcourse/overfitting.html



Regularizing weights (L1,L2)

Dropping layer
Regularization

Methods Smoothing training labels

Early stopping
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Image source: https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/I2-regularization



Flooding

Proposed Objective function

Jj(6)=1J(6) —bl+b, !PSSIA] - loss
b = Flooding constant e —.-

test loss
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outputs = model(inputs) ol_toss .. C o w o B .
loss = criterion(outputs, labels) Epoch Epoch
flood = (loss-b).abs()+b # This is it! (a) w/o Flooding (b) w/ Flooding

optimizer.zero_grad()
flood.backward()
optimizer.step()
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Image source: Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. 2020. Do
we need zero training loss after achieving zero training error? In Proceedings of the 37th International
Conference on Machine Learning (ICML'20). JMLR.org, Article 428, 4604—4614



Simplicity

W h t h | S * No extra computational cost (Adding Dropping
y layers etc.)

* Applicable to lots of machine learning and

p a p e r? deep learning models

* Avoids Zero Training Loss



Results

w/o early stopping

w/ early stopping

Dataset Model & Setup | w/oflood w/flood | w/oflood w/ flood

MLP 98.45%  98.76% | 98.48%  98.66%

MNIST MLP w/ weight decay 98.53% 98.58% | 98.51%  98.64%

MLP w/ batch normalization 98.60% 98.72% | 98.66%  98.65%

MLP 9227%  9315% | 92.24%  92.90%

Kuzushiji MLP w/ weight decay 9221%  92.53% | 92.24%  93.15%

MLP w/ batch normalization 9298%  93.80% | 92.81% 93.74%

SVHN ResNet18 9238% 92.78% | 92.41%  92.79%

ResNet18 w/ weight decay 93.20% - 9299%  93.42%

CIFAR-10 ResNet44 75.38%  7531% | 7498%  75.52%

i ResNet44 w/ data aug. & LR decay | 88.05% 89.61% | 88.06%  89.48%

CIFAR-100 ResNet44 46.00% 45.83% | 46.87%  46.73%
i ResNet44 w/ data aug. & LR decay | 63.38% 63.70% | 63.24% -




Implementation

#define flooding variants of loss functions

#for categorical crossentropy

def flood_categorical_crossentropy(y_true, y_pred):
loss tf.keras.losses.categorical_crossentropy(y_true, y_pred)
loss = tf.math.abs(loss = b) + b
return loss

#for binary crossentropy

def flood_binary_crossentropy(y_true, y_pred):
loss tf.keras.losses.binary_crossentropy(y_true, y_pred)
loss = tf.math.abs(loss - b) + b
return loss|



MNIS

* Testing acc: 98.41%
* Testing acc w/ Flooding: 98.48%
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KMNIS

* Testing acc: 92.61%
* Testing acc w/ Flooding: 93.13%
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. * Testing acc: 90.23%
FaSh IOH-M N |S * Testing acc w/ flooding: 90.45%
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Analysis
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Figure 2. Learning curves of test loss. The black dotted line shows the baseline without flooding. The colored lines show the results for
different flooding levels specified by the color bar. DA and LRD stand for data augmentation and learning rate decay, respectively. We
can observe that adding flooding will lead to lower test loss with a double descent curve in most cases. See Fig. 6 in Appendix for other

datasets.
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Possible PRs

Test for Deep CNNs

Test Adaptive Flooding
* Decay b (Flooding Constant)
* Example:
* Ifn—1%100=n then,b=b — A
where, n = number of epochs, A =constant
Test effects of learning rate decay along with Adaptive Flooding
Test on other datasets

Any other suggestions..!!
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Thank you very much.

Have a nice day !!!



