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NRI — Backgrounds

« Various kinds of time series data are governed by an underlying
network.
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Example: blood oxygen level (via fMRI)
Functional brain network

Lynn, Christopher W., and Danielle S. Bassett. "The physics of brain network structure,
function and control." Nature Reviews Physics. 2019

Time series data Network



NRI — Backgrounds

« Various kinds of time series data are governed by an underlying
network.
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NRI — Backgrounds

* Besides examples in nature, human behaviors can also be governed by network
interactions.

* Motion of players in a basketball game
* Traffic, social activities...

Time series data Network

Can we reversely inference the network interactions?

» Statistical methods exist, such as correlation and granger causality.

Here we present and reimplement a neural network method, Neural
Relational Inference.



NRI — Methods

(Legend: I Node emb. [[l: Edge emb. —»:MLP 1L, : Concrete distribution =-=-#: Sampling ]
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* NRI consists an encoder and a decoder network.

* In the implementation, NRI takes the advantage of Graph Neural
Network (GNN) and Variational Auto Encoder (VAE).

 We will introduce NRI step by step!



NRI — Methods

1. GNN refers to a set of neural networks that takes graph structured data as
inputs.

2. GNN are neural models that captures the dependence of graphs via message
passing between the nodes of graphs (Zhou et al., 2020).
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NRI — Methods

* |n neural network model, embedding/representation might be the key for

successful learning.
* In GNN, we designh node embedding and edge embedding for training.
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NRI — Methods

* |n neural network model, embedding/representation might be the most

important key for successful learning.
* In GNN, we designh node embedding and edge embedding for training.
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Fig. 2. The general design pipeline for a GNN model.
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NRI — Methods

[ Legend: [l: Node embedding [TI: Edge embedding = : MLPJ
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hl,hfL are node embeddings. hé4’3) is edge embedding.

£} is a neural network that takes edge embeddings as inputs.
f} is a neural network that takes node embeddings as inputs.



NRI — Methods

* NRI consists of an encoder and a decoder. In the last stage, the edge
embeddings are used to perform edge classification.
* Although we use encoder as the example, ideas of node/edge embedding

are also in the design of decoder.

e—v

Z represents edge types.
q4(z|x) is the probability of
edge types for edge z;;.

q,(z|x)
Encoder Kipf et al., 2018




NRI — Methods

 If our training dataset contains ground truth edge types, then
Encoder alone can inference the edge type for testing dataset.

This is true for simulation data.
 However, in some cases (e.g. online edge inference), what we ONLY

have is the time series.
That is, our training dataset does not contain ground truth edge types.
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NRI — Methods

* To overcome the barrier, NRI takes the advantage of VAE.

e VAE is suitable for data without labelling (unsupervised
learning).

The encoder compresses input x to
X l x'  the latent space.
The decoder produces x' (from latent

Encoder  Latent variable Decoder space) as similar as x.



NRI — Methods

* The decoder has a similar structure as the encoder.
* MLP layer
e/ = E and E = V operations

e N

q5(2[x)

Encoder Decoder

(Legend: I Node emb. [[l: Edge emb. —s:MLP {L._: Concrete distribution =--#:Sampling ]
Kipf et al., 2018




NRI — Methods

* The decoder takes x; and edge type probabilities g4 as input. Two

types of inputs are combined.
* The decoder output Ax! is the predicted increasement for the next
time step.

* Qg (zij]x)

Encoder “ Decoder

(Legend: I Node emb. [[l: Edge emb. —»:MLP 1., : Concrete distribution =--#: Sampling ]

Kipf et al., 2018




NRI — Methods

* To sum up, in case we ONLY have time series, we have to infer the edge
(interaction) types through VAE. If the latent variable g4 (z|x) represents edge

types correctly, the decoder should be able to produce matched increasement.
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NRI - Implementations

* First, let’s take a look at the encoder.

def parse_args():
pass
def train(args):

class MLPB'Iock(nn.Modu'Ie): ::::::Per"Forms both training and validation

Pass pass
def test(args, best_model_path):

"""Test the best performance model

class MLPEncoder(nn.Module):

Pass
pass
src/nri_encoder.py if _name_ == "__main__":
pass

scripts/train_enc.py



NRI - Implementations

e |et’s take a look at the decoder.

class MLPDecoder(nn.Module):
pass

src/nri_decoder.py

def parse_args():
pass
def reconstruction_error(pred, target):
pass
def train(args):
"""performs both training and validation

pass
def test(args, best_model_path):
"""Test the best performance model

pass
if __name__ == "__main__":

pass

scripts/train_dec.py



NRI - Implementations

* Use ‘scripts/generate_dataset.py to generate simulation data.

This file is provided by the paper author.
* You can use run_encoder.py and run_decoder to play with the

trained model. Use traj_plot.ipynb to generate prediction

trajectory.
* Let’s go to Github for details.



NRI — Results, Encoder

* In the experiments, we use simulated 2D springs-coupled data in
training and testing.
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Observed dynamics Interaction graph
Kipf et al., 2018



NRI — Results, Encoder

* We train the encoder with 40 epochs, batch_size=5, each trial with 49 times
steps. Use nn.CrossEntropylLoss as the loss function. The hidden layer
dimension of MLP layer is 256.

’ Test loss: 0.20062
; Test acc: 0.91605

e’ P

Observed dynamics Interaction graph



NRI — Results, Encoder

* We train the encoder with 40 epochs, batch_size=5, each trial with 49 times
steps. The hidden layer dimension of MLP layer is 256.
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Any idea to better
present the result?
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NRI — Results, Decoder-1

Use decoder alone, provided with edge types,
1 Step ahead prediction, then teacher force
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Test error: 0.009824
Test baseline error: 0.030993



NRI — Results, Decoder-2

10 Steps prediction, then teacher force
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NRI — Paper Results
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Figure 11. Visualization of NBA trajectories. Left: ground truth; middle: model prediction; right: sampled edges.




NRI — Issues

Appreciate any helps for the followings issues.

1. Test and add support for GPU platform.
2. MLP building block has been implemented for the encoder and decoder.

Consider other building blocks (e.g. CNN, RNN).
3. For data without ground truth edge information, we need to combine the

encoder and the decoder together (optional).
4. Visualization for encoder output result.

Any minor adjustments are also welcomed! ©
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