
4840-1054: Media Computing in Practice (Summer 2022)

Week 2: April 13, 2022 Yusuke Matsui

Schedule

Week	Date	Content	Presenter
3	April 20, 2022	Seminar	吴 宇涵, 近藤 佑亮, 陳 星星, 荘 昊昱,
4	April 27, 2022	Seminar	武縄 瑞基, 林 洸希, 朱 国豪, 郑 书晗,
5	May 11, 2022	Seminar	塩田 悠真, 楊 博銘, GOSWAMI Nabarun, アヌバワ アヌバワ
6	May 18, 2022	Seminar	ユンセィ セィリン, 尤 書恒, YANG Chengkai, 水上 瑠夏,
7	May 25, 2022	Seminar	BAYASGALAN Amartuvshin, 本橋 優俊, LUO Erxiang,
8	June 8, 2022	Seminar	曹 永鵬, 佐藤 賢志郎, 舘野 将寿
9	June 15, 2022	Coding day 🕅	
10	June 22, 2022	Seminar for PR	Presenters of Week 3 and 4
11	June 29, 2022	Seminar for PR	Presenters of Week 5 and 6
12	July 6, 2022	Seminar for PR	Presenters of Week 7 and 8
13	July 13, 2022	Invited talk	

- > I'll post this on the web
- > Let me know if you prefer to put your GitHub account name instead of your real name.
- > If you forgot to submit the survey and don't see your name above, please let me know **now.** 2

In summary: (1) when you present

- > By 23:59 of the day before your presentation,
 - ✓ Let me know the title of the paper
 - ✓ Let me know the name of the repo (I will create one for you under <u>https://github.com/media-comp</u>)
 - ✓ Push your code to the repo
 - ✓ Submit your slides (pdf) to me
- You can reach me via Slack if you are a student of IST ICE
- If not, e-mail me <u>matsui@hal.t.u-tokyo.ac.jp</u> or DM me via twitter <u>@utokyo_bunny</u>

東京大学・情報理工学系研究科・電子情報学専攻・松井勇佑研究室 Matsui Lab, the University of Tokyo Web: yusukematsui.me Blog: mti-lab.github.io/blog/

2020年5月からTwitterを利用しています

5 フォロー中 370 フォロワー

松井研 / Matsui Lab

In summary: (1) when you present

- Presentation time:
 - ✓ 20 min talk + 5 min Q&A

In summary: (2) after your presentation

➤ If you receive a PR, review and merge/reject it.

In summary: (3) when you're not a presenter

- > Listen to the presentation
- > After the presentation, do the following if you like the paper
 - \checkmark Run the code
 - ✓ Send PRs: Please submit at least three Pull Requests to different repositories

In summary: (4) presentation for PR

- Explain the PRs you have created and the PRs you have reviewed
- By 23:59 of the day before your presentation,
 ✓ Submit your slides (pdf) to me
- > 10 min talk + 1 min Q&A

What paper should you choose?
 Fork, pull requests, review, and merge
 GitHub actions

What paper should you choose? Fork, pull requests, review, and merge GitHub actions

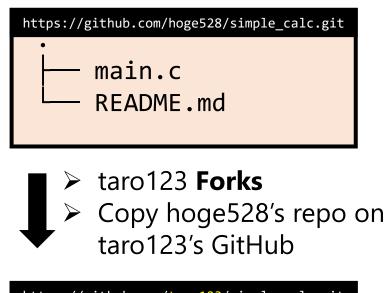
What paper should you choose?

- > Type 1: Recent solid paper
 - ✓ E.g., X. Chen and K. He, "Exploring Simple Siamese Representation Learning", CVPR 2021, Best paper Honorable Mentions
 - ✓ "Best paper candidates" might be a good choice if you cannot come up with papers at all.
 - The SOTA scores itself is not very important. The contribution (impact) to the community is important.
 - ✓ After reading the paper, what new insights did we gain?

What paper should you choose?

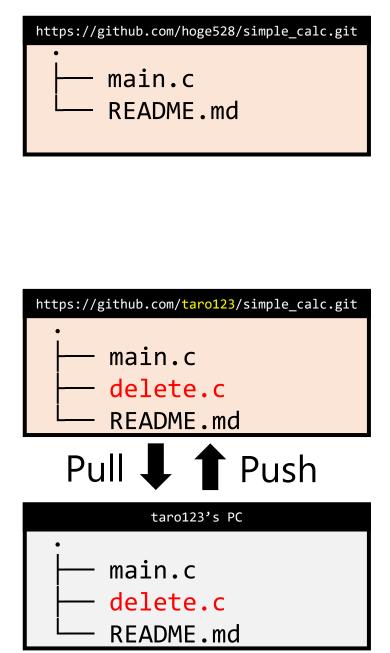
- > Type 1: Recent solid paper
 - ✓ You can find the official repository. Please cite it in your repository/presentation.
 - Try to implement from scratch by yourself, with:
 Careful comments
 - Decide the level of abstraction by yourself
 - **D** Better code base, possibly with more functionalities
 - **D** Cool: implementation by different language
 - Cool: implementation w/ different framework (e.g., from PyTorch to JAX)
 - **D** Cool: implementation w/o framework

What paper should you choose?

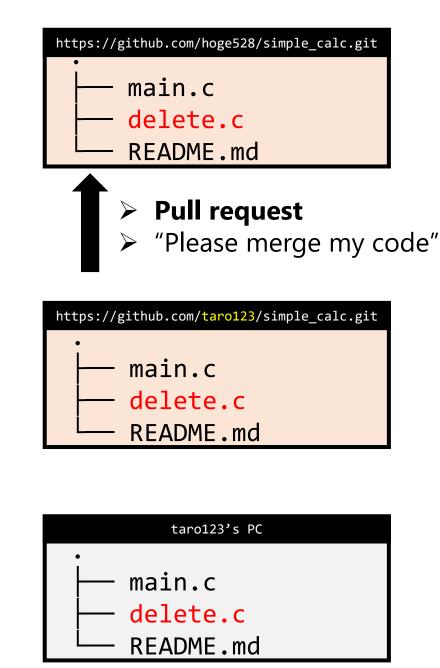

- > Type 2: Classic paper with benchmark
 - ✓ E.g., C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Images", ICCV 1998
 - ✓ You can find several good implementation (e.g., OpenCV and MATLAB)
 - ✓ Try to implement from scratch by yourself and evaluate the runtime
 - v.s. OpenCV, MATLAB
 - Your code: naïve python, Numba-optimized python, SIMD-optimized c++, Julia, ...
 - □ with strange datasets?

What paper should you choose?
 Fork, pull requests, review, and merge
 GitHub actions

Fork, pull requests, review, and merge


Q	Yes	Probably yes	Probably no	No
Have you ever created a Pull Request?	10	2	5	5
Have you ever reviewed a Pull Request?	6	1	8	7

1 Fork



② Update the forked repo

③ Update the original repo by Pull Requet

Fork, pull requests, review, and merge

- > Let's try!
 - 1. Student X creates a repo
 - 2. Student Y forks it and creates a PR
 - 3. X reviews it and asks Y to **update it**
 - 4. Y updates it
 - 5. X merges it
 - 6. X and Y takes turn

X	Υ
吴宇涵	近藤 佑亮
陳星星	荘 昊昱
武縄 瑞基	林 洸希
朱国豪	郑 书晗
塩田 悠真	楊 博銘
GOSWAMI Nabarun	アヌバワ アヌバワ
ユンセィ セィリン	尤 書恒
YANG Chengkai	水上 瑠夏
BAYASGALAN Amartuvshin	本橋 優俊
LUO Erxiang	曹 永鵬
佐藤 賢志郎	舘野 将寿

What paper should you choose? Fork, pull requests, review, and merge GitHub actions

GitHub Actions

Q	Yes	Probably yes	Probably no	No
Do you know how to use GitHub actions?		4	6	10

See the official tutorial

GitHub Actions: simple code

.github/workflows/simple.yml

name: simple try
on: [push]
jobs: build: runs-on: ubuntu-latest
<pre>steps: - uses: actions/checkout@v3 - name: Run my funny commands run: pwd ls echo abcdefg uname -a</pre>

GitHub Actions: several OSs

.github/workflows/os.yml

```
name: several OSs
on: [push]
jobs:
 build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [macos-latest, ubuntu-latest, windows-latest]
    steps:
    - uses: actions/checkout@v3
    - name: Run my funny commands
      run:
        pwd
        ls
        echo abcdefg
        uname -a
```

GitHub Actions: python

.github/workflows/python.yml

name: simple python
on: [push]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v3
- name: Run some python
run:
python -c "print(3+2)"

Next week

▶ Presentation by 吴宇涵,近藤佑亮,陳星星,荘昊昱,